Pi Approximations Pi Approximations

Pascal Sebah

1  Approximation formulae

The history of p is full of more or less good approximations.

1.1  Rational approximations

The first estimations of the ratio of the circumference to it's diameter are found in the ancient times. The symbol p was not yet used to design this ratio.

p
»
3+ 1
8
= 3.1(25)       (Babylonians)
p
»
( 4
3
)4 = 3.1(604938271...)       (Egyptians)
p
»
22
7
= 3.14(28571428...)       (Archimedes287-212 B.C.)
p
»
3+ 8
60
+ 30
602
= 3.141(666666...)       (C. Ptolemy 100-170)
p
»
62832
20000
= 3.141(6)       (India around 500)
p
»
333
106
= 3.1415(094339...)
p
»
355
113
= 3.141592(9203...)       (Zu Chongzhi, Adriaen Métius, ...)

Ptolemy gave his approximate value of p in his Almagest and he used sexagesimal fractions [1].

The famous and remarquable value 355/113 was published in 1625 by Adriaen Metius but it was already used in China around 480 and also known to the Japanese.

1.1.1  Continued fractions

The theory of continued fractions provides the sequence of the best rational approximations for the number p, the first terms are given recursively by (starting with x = p and n = 0)

in
=
[x]
x
=
1
x-in
n
=
n+1.

It follows that i0 = 3,i1 = 7,i2 = 15,... and it's usual to write it as :

p = [3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,2,1,1,15,3,13,...]

which becomes in term of fractions

é
ê
ë
3, 22
7
, 333
106
, 355
113
, 103993
33102
, 104348
33215
, 208341
66317
, 312689
99532
, 833719
265381
, 1146408
364913
, 4272943
1360120
,¼ ù
ú
û

and for example

4272943
1360120
= 3.141592653589(3891...)

has 12 correct digits. We know from an important theorem of continued fraction (see [2] for a proof) that the error of the approximation pn/qn satisfies

ê
ê
ê
pn
qn
-p ê
ê
ê
£ 1
qnqn+1
< 1
qn2
.

1.2  With square roots

p
»
  __
Ö10
 
= 3.1(622776601...)       (India around 600)
p
»
3
4
( Ö3+Ö6) = 3.1(3615541276...)       (Nicolaus de Cusa-1464)
p
»
Ö2+Ö3 = 3.14(62643699...)
p
»
88
  ___
Ö785
= 3.14(08546850...)       (TychoBrahe-1580)
p
»
10Ö2-11 = 3.14(21356237...)       (Grosvenor-1868)
p
»
  __
Ö51
 
-4 = 3.141(4284285...)
p
»
  æ
 ú
Ö

40
3
-2Ö3
 
= 3.1415(333387...)       (Kochansky-1685)
p
»
13
50
  ___
Ö146
 
= 3.14159(19531...)       (Specht-1836)
p
»
141
1232
æ
è
5+6   __
Ö14
 
ö
ø
= 3.14159265358(015...)

Kochansky's value (Poland) was published in 1685 and is the result of a geometrical construction for p. Another construction was given by Specht (Germany) for it's value.

1.3  Ramanujan's approximations

In his work on modular equations Ramanujan found impressive approximations, this is just a small selection [4].

p
»
æ
ç
è
92+ 192
22
ö
÷
ø
1/4

 
= 3.14159265(2582...)
p
»
9
5
+   æ
 ú
Ö

9
5
 
= 3.141(6407864...)
p
»
9801
4412
Ö2 = 3.141592(7300...)
p
»
63
25
æ
ç
è
17+15Ö5
7+15Ö5
ö
÷
ø
= 3.141592653(805...)
p
»
12
  ___
Ö130
log æ
ç
ç
ç
è
(2+Ö5)(3+   __
Ö13
 
)

Ö2
ö
÷
÷
÷
ø
= 3.14159265358979(2653...)
p
»
12
  ___
Ö190
log æ
è
(2Ö2+   __
Ö10
 
)(3+   __
Ö10
 
) ö
ø
= 3.141592653589793238(1908...)

The last approximations are of the form

p » 2
Ön
log(8gn12)

where usually n is an integer and gn a Ramanujan's invariant.

To conclude this section here is a remarkable approximation of p published in 1984 by Morris Newman and Daniel Shanks [3]. Set

a
=
1071
2
+92   __
Ö34
 
+ 3
2
  æ
Ö

255349+43792   __
Ö34
 
 
,
b
=
1553
2
+133   __
Ö34
 
+ 1
2
  æ
Ö

4817509+826196   __
Ö34
 
 
,
c
=
429+304Ö2+2
Ö
 

92218+65208Ö2
 
,
d
=
627
2
+221Ö2+ 1
2

Ö
 

783853+554268Ö2,
 

then

ê
ê
ê
ê
ê
p- 6
  ____
Ö3502
log(2abcd) ê
ê
ê
ê
ê
< 7.4 ×10-82

1.4  Other approximations

p
»
æ
ç
è
2143
22
ö
÷
ø
1/4

 
= 3.14159265(25...)       (Plouffe)
p
»
æ
ç
è
77729
254
ö
÷
ø
1/5

 
= 3.14159265(41...)       (Castellanos)
p
»
6
5
log( 7+3Ö5) = 3.14159(33769...)
p
»
e2
3
+ 19
28
= 3.14159(01282...)
p
»
6
5
log(2)+ 24
5
log(j) = 3.14159(3376...)
p
»
4

Ö

j
= 3.14(4605511...)       (Ghyka)
p
»
6
5
(1+j) = 3.141(6407864...)

where

j = 1+Ö5
2

is the Golden ratio.

References

[1]
F. Cajori, A History of Mathematical notations, Dover, (republication 1993, original 1928-1929)

[2]
G.H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Science Publications, (1979)

[3]
M. Newman, D. Shanks, On a Sequence Arising in Series for p, Math. of Comp., (1984), vol. 42, p. 199-217

[4]
S. Ramanujan, Modular equations and approximations to p, Quart. J. Pure Appl. Math., (1914), vol. 45, p. 350-372


Back to mathematical constants and computation


File translated from TEX by TTH, version 2.32.
On 21 May 2000, 23:31.
/a>]
M. Newman, D. Shanks, On a Sequence Arising in Series for p, Math. of Comp., (1984), vol. 42, p. 199-217

[4]
S. Ramanujan, Modular equations and approximations to p, Quart. J. Pure Appl. Math., (1914), vol. 45, p. 350-372


Back to mathematical constants and computation


File translated from TEX by TTH, version 2.32.
On 21 May 2000, 23:31.